(x^3+3x^2-2x-8)/(x+2)

Simple and best practice solution for (x^3+3x^2-2x-8)/(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^3+3x^2-2x-8)/(x+2) equation:


D( x )

x+2 = 0

x+2 = 0

x+2 = 0

x+2 = 0 // - 2

x = -2

x in (-oo:-2) U (-2:+oo)

(x^3+3*x^2-(2*x)-8)/(x+2) = 0

(x^3+3*x^2-2*x-8)/(x+2) = 0

x^3+3*x^2-2*x-8 = 0

x^3+3*x^2-2*x-8 = 0

{ 1, -1, 2, -2, 4, -4, 8, -8 }

1

x = 1

x^3+3*x^2-2*x-8 = -6

1

-1

x = -1

x^3+3*x^2-2*x-8 = -4

-1

2

x = 2

x^3+3*x^2-2*x-8 = 8

2

-2

x = -2

x^3+3*x^2-2*x-8 = 0

-2

x+2

x^2+x-4

x^3+3*x^2-2*x-8

x+2

-x^3-2*x^2

x^2-2*x-8

-x^2-2*x

-4*x-8

4*x+8

0

x^2+x-4 = 0

DELTA = 1^2-(-4*1*4)

DELTA = 17

DELTA > 0

x = (17^(1/2)-1)/(1*2) or x = (-17^(1/2)-1)/(1*2)

x = (17^(1/2)-1)/2 or x = (-(17^(1/2)+1))/2

x in { (-(17^(1/2)+1))/2, (17^(1/2)-1)/2, -2}

(x+(17^(1/2)+1)/2)*(x-((17^(1/2)-1)/2))*(x+2) = 0

(x+(17^(1/2)+1)/2)*(x-((17^(1/2)-1)/2)) = 0

( x+(17^(1/2)+1)/2 )

x+(17^(1/2)+1)/2 = 0 // - (17^(1/2)+1)/2

x = -((17^(1/2)+1)/2)

( x-((17^(1/2)-1)/2) )

x-((17^(1/2)-1)/2) = 0 // + (17^(1/2)-1)/2

x = (17^(1/2)-1)/2

x in { -((17^(1/2)+1)/2), (17^(1/2)-1)/2 }

See similar equations:

| (7+6*5)= | | 11+5x=71 | | 9x-122=5x-6 | | 4(y+3)/3=5y-7 | | x+100=1.10 | | 3y+17=5y+9 | | 2(x+1)-3(x+(x-1))=265 | | (x^2+7x+12)/(x+3) | | 4(x-3)=9x+2 | | y-20=-20/3(x-10) | | 20+6*10-(7+6*5)= | | -10-10x=23-17x | | 2x=5-9x/18 | | 4x^2+24x-11=0 | | -6-30/(-6) | | -3r-14=1 | | -2x^2-7x-10=0 | | X+(x+3)=57 | | 2x^3-2x=3x^2 | | 11=7-2(5p-2) | | 96-2=10x+24 | | X+(x+3)=-51 | | 4.5x=5.25 | | x^2-2x-8=y | | 2y^3+y^2=3y | | x+y=1.10 | | 265=(2x+4)-(3x+3+3x) | | 900+.010x=1200+0.15(x-8000) | | t^3+5t^2+4t=0 | | t^2+5t+4t=0 | | 5x=1.16 | | 0=0.25x^2-8x |

Equations solver categories